Benchmarking Pocket-Scale Databases

1[0000—0002—6391—2854]) Oliver Kennedyl [0000—0003—0632—1668]
Lukasz Ziarekl [0000—0003—4353—1998]

Carl Nuessle , and

! University at Buffalo
2 {carlnues,okennedy,lziarek}@buffalo.edu

Abstract. Embedded database libraries provide developers with a com-
mon and convenient data persistence layer.They are a key component
of major mobile operating systems, and are used extensively on inter-
active devices like smartphones. Database performance affects the re-
sponse times and resource consumption of millions of smartphone apps
and billions of smartphone users. Given their wide use and impact, it
is critical that we understand how embedded databases operate in real-
istic mobile settings, and how they interact with mobile environments.
We argue that traditional database benchmarking methods produce mis-
leading results when applied to mobile devices, due to evaluating per-
formance only at saturation. To rectify this, we present POCKETDATA,
a new benchmark for mobile device database evaluation that uses typi-
cal workloads to produce representative performance results. We explain
the performance measurement methodology behind POCKETDATA, and
address specific challenges. We analyze the results obtained, and show
how different classes of workload interact with database performance.
Notably, our study of mobile databases at non-saturated levels uncovers
significant latency and energy variation in database workloads resulting
from CPU frequency scaling policies called governors — variation that
we show is hidden by typical benchmark measurement techniques.

Keywords: PocketData - Mobile - SQLite - Android

1 Introduction

General-purpose, embedded database libraries like SQLite and BerkeleyDB pro-
vide mobile app developers with full relational database functionality, contained
entirely within an app’s namespace. These libraries are used extensively in apps
for smartphones, tablets, and other mobile computing devices, for example as
the recommended approach for persisting structured data on iOS and Android.
However, database libraries can be a bottleneck [39], causing sluggish app per-
formance and unnecessary battery drain. Hence, understanding database library
performance and different database library configurations is critical, not just for
library developers — but for any developer looking to optimize their app.
Unfortunately existing tools for measuring the performance of data man-
agement systems are presently targeted exclusively at server-class database sys-
tems [9, 1, 24,12, 13], including distributed databases [21, 3] and key value stores [8,

YCSB Workload C

Feature|Server-DB| Mobile-DB 'g 291 3 Seneoe
Throughput| Crucial |Less Relevant > e
Latency| Relevant Crucial £ iz %
Startup Cost| Irrelevant Relevant % .
Energy| Relevant Crucial : b
Simult. Clients 10k+ 1 g’ Jo
Max Workload| 100k+/s 400/s 9.
HW Sharing|None or VM Shared < o
' 2Databjase Tl:reads5 '
(a) Differences between server-class (b) Database performance on

and pocket-class database workloads YCSB workload A.

Fig.1: Measuring mobile database performance using server-class
benchmarks produces misleading results.

2, 35]. Unsurprisingly, server-class database systems optimize for different crite-
ria than do embedded databases like SQLite or BerkeleyDB (Figure 1a). Thus,
existing measurement tools can not be used directly to assess the performance
of embedded databases. In this paper, we focus on one specific impedance mis-
match: Server-class database benchmarks use throughput as a proxy for overall
database performance. To determine performance, server-class benchmarks mea-
sure throughput at saturation: The maximum query rate a database can sustain.

However, the measurement of throughput is vastly less important on phones.
While there are many tasks, both interactive and background, phone databases
are per-app. Our prior study [18] found that smartphone database instances need
to cope with bursts of at most a few hundred queries, well below the throughput
potential of a single thread, and well below saturation.

To understand why measurement at saturation is a problem, consider Fig-
ure 1b, which illustrates the results of one server-class benchmark (YCSB Work-
load C) applied to SQLite and BerkeleyDB, each using their default settings.
Fach point represents another thread worth of load being offered to the database.
As more concurrent load is added, latency increases as contention overheads com-
pound. The result is seemingly a clear victory for BerkeleyDB. However, this
graph is not representative of actual smartphone usage. In the low throughput
area that is representative (the zoomed-in portion of the graph), the systems are
competitive, with SQLite actually being the faster of the two on most workloads.

More generally, by measuring performance at lower throughputs, results are
more affected by noise from OS and hardware optimizations, background ac-
tivity, and other sources endemic to phones. Although this noise significantly
impacts embedded database performance, existing performance measurement
techniques do not accurately capture it. In this paper, we identify several sources
of measurement error arising from measuring performance at low throughputs,
and show how they can produce misleading results. We introduce POCKETDATA,
a mobile benchmarking toolkit, designed to work around these error sources.
To build POCKETDATA, we extend the Android Operating System Platform

(AOSP) [14] with new logging capabilities, control over relevant system proper-
ties, and a benchmark-runner app. These extended capabilities help expose the
precise causes of performance differences between systems or experimental trials.
The result is a toolkit for obtaining reliable, reproducible results when evaluating
data management technologies on mobile platforms like smartphones®.

In our recent study of mobile database workloads [18], we made two key
observations: (1) mobile workloads are dominated by key-value style queries,
and (2) mobile database workloads are bursty. Following the first observation,
we build on the Yahoo Cloud Services Benchmark (YCSB) [8], a popular key-
value workload generator. To account for the latter observation, we extend the
YCSB workload generator to operate at lower throughputs. We use the result-
ing workload generator to evaluate both performance and power consumption
of SQLite on Android. One key finding of this evaluation was that for spe-
cific classes of workload, Android’s default power management heuristics cause
queries to take longer and/or consume more power. For example, we observe
that the default heuristics are often significantly worse than far simpler naive
heuristics. On nearly all workloads we tested, running the CPU at half-speed
significantly reduces power consumption, with minimal impact on performance.
Android’s heuristics introduce higher latency and increase energy consumption
due to excessive micromanagement of CPU frequencies.

The specific contributions of this paper include: 1. We identify sources of error
in database performance measurement at low-throughputs (Section 2). 2. We
propose a database benchmarking framework called POCKETDATA that makes
it possible to mitigate these sources of error (Section 3). 3. We present results
from an extensive benchmarking study of SQLite on mobile devices (Section 4).
We cover related work and conclude in Section 5 and Section 6, respectively.

2 The Need for Mobile Benchmarking

Understanding the performance of data management systems is critical for tun-
ing and system design. As a result, numerous benchmarks have emerged for
server-class data management systems [9,1,24,12,13,21, 3,8, 2, 35]. In contrast,
mobile data management [30, 28, 23] is a very different environment (Figure 1a).
Here, we focus on one key difference: mobile workloads operate significantly be-
low saturation. Measuring at saturation makes sense for typically multi-client
server-class databases, which aim to maximize throughput. However, typical mo-
bile data management happens at much lower rates [18], and on resource- and
power-constrained hardware. As a result, metrics like latency and power con-
sumption are far more important, while measuring performance at saturation
hides meaningful performance quirks that can arise in practice.

The performance impact of frequency scaling is hidden at satura-
tion. The most direct effect of measuring at below saturation is related to a
feature called frequency scaling, which allows the operating system to adjust

3 Available for download at http://pocketdata.info

YCSB Workload C 25000, YCSB Workload C

BN Unscheduled Time| BN CPU Saturated
W CPU Time BB CPU Unsaturated
20000

N
=]
=3
=3
=3

- =
£ 15000 £
>
E & 15000
8 10000 £
& & 10000
-t -
T]
£ 5000 e
8
0 9 % b 9 < % > & o“& 6\40 0(\6
2 % G, 2% % o, Qé\”‘@ &z(,q o & (\b‘&
CPU Unpinned %G/ CPU Pinned %/ & A [e)
Query Delay Time and CPU State CPU Governor
(a) Saturated v. Unsaturated (b) Latency by governor.

Fig.2: Performance on for Workload C (read-only)

CPU performance in response to changing load. As load drops, lower CPU fre-
quencies can significantly extend battery life. While frequency scaling does exist
on server-class database hardware, battery-powered mobile devices remain per-
petually concerned with conserving energy. As such, they are far more aggressive
with frequency scaling. During periods of low load, the OS can vary CPU fre-
quencies to dozens of settings, or disable CPU cores altogether.

The particular policy heuristics to implement this adjustment are termed
governors, such as the Ondemand governor used in most Linux distributions as
well as earlier Android phones, or the Interactive governor used in more recent
Android phones. Though their specific policies differ, both governors rely on
only a single input datum: how busy the CPU is. By measuring the database
at saturation, the CPU is kept completely, continuously busy, and virtually all
governors react identically to this input: by running the CPU at maximum speed.

Figure 2a illustrates the impact of running below saturation. To simulate
operation at lower throughputs, we injected periodic thread sleeps into YCSB [8]
Workload C. The left bar cluster shows the results of three throughputs: At
saturation (Oms delay), constant throughput below saturation (1ms delay), and
bursty throughput below saturation (lognormal delay)?. Adding delays increases
the time spent off-core (dark-blue), as expected. However, the time spent doing
useful work on the CPU (light-red) also increases. To confirm this is a result
of frequency scaling, we re-ran the experiment, but with the CPU pinned to
maximum frequency (right bar cluster). Here, on-core time is almost constant.

Making matters worse, the frequency scaling operation is expensive: No ac-
tivity can be scheduled for several milliseconds while the core is scaled up or
down. Hence, when the CPU is running at a low frequency, a database with a
burst of work takes a double performance hit: first from having an initially slower
CPU and second from waiting while the core scales up. Ironically, this means
that a database running on a non-saturated CPU could significantly improve
latencies by simply busy-waiting to keep the CPU pinned at a high frequency.

I/0 performance is different at saturation. I/O on mobile devices is quite
distinct from I/O on server-class devices. Most notably, mobile devices use exclu-
sively flash media for persistent storage. Writes to flash-based storage are bursty,

4 Here, we follow [18], which observes lognormal delay with a 6ms mean in typical use.

as the flash media’s internal garbage collection identifies and reclaims overwrit-
ten data blocks. On write-heavy workloads, this effect is far less pronounced
below saturation, as the disk has a chance to “catch up”.

CPU frequency scaling also plays a significant role in embedded database
I/O behavior as well. Repeated idling, such as from lower loads or I/O-blocked
operations are interpreted by the OS as a lack of work to be done and a signal
to scale down cores to save power.

Governors are indistinguishable at saturation. Running benchmarks at
full saturation, as a server-class study would do, obscures a broader performance
factor. Consider Figure 2b, which shows the effect of frequency scaling on total
latency when run with different CPU governor policies. The dark (blue) bars
show database performance when the CPU is saturated; the lighter (red) bars
show performance when the CPU is unsaturated. Each cluster shows the total
latency for a workload when run under a particular CPU governor policy.

When running Workload C queries at saturation (dark-blue), database per-
formance latency is nearly identical across all governor choices, excepting the
Powersave governor which deliberately runs the CPU at lowest speed. Only
when the workload is run below saturation (light-red) do significant differences
between the governors begin to emerge. These differences can have a significant
impact on real-world database performance and need to be addressed.

3 PocketData

Traditional database benchmarks [8,36,29] are designed to run on server-class
databases, and rank databases by either the maximum number of queries pro-
cessed per second (i.e., throughput) or equivalently the minimum time taken to
process a batch of queries. In both cases, database performance is measured at
saturation, which can produce misleading results when run on the mobile plat-
form. In this section, we first propose adjusting classical database benchmarks to
run below saturation and then outline the POCKETDATA workflow and runtime.

3.1 Benchmark Overview

The initial input to POCKETDATA is a database and query workload, such as
one generated by an existing server class benchmark. Specifically, we require
an initial database configuration (e.g., as generated by TPC-H’s dbgen util-
ity), as well as a pre-generated workload: a sequence of queries (e.g., as gener-
ated by TPC-H’s qgen utility). POCKETDATA operates in three stages: First, a
pre-processing stage prepares the query workload for later stages. Second, the
benchmark database configuration is installed on the test device, and finally the
prepared workload is evaluated.

Inter-Query Delays. The POCKETDATA test harness simulates performance
at levels below saturation by injecting delays in between queries. These delays
are randomly generated by POCKETDATA’s workload preprocessor, which ex-
tends the pre-generated query workload with explicit instructions to sleep the

benchmark thread. The length and regularity of the inter-query delays is pro-
vided to as a parameter to the preprocessor. Throughout the remainder of the
paper, we consider three values for this parameter: 1. A lognormally distributed
delay, mirroring typical app behavior [18]. 2. A fixed 1ms inter-query delay, for
comparison, and 3. Zero delay, or performance at saturation.

3.2 Benchmark Harness

The second and third stages are run by the benchmark harness, whicc a driver
application and a rooted version of the standard Android platform with cus-
tomized performance parameters. The application part of the benchmark con-
nects to an embedded database through a modular driver. We developed drivers
for: 1. Android OS’s native SQLite integration, 2. BerkeleyDB through JDBC,
and 3. H2 through JDBC. As it is used almost exclusively on the two major
mobile platforms, our focus in this paper is on evaluating SQLite®.

The benchmark harness takes three parameters: A CPU governor, a database
configuration, and a workload annotated with delays. The selected governor is
enabled by the benchmark as the phone boots up. After boot, the benchmark
next initializes the database to the selected configuration, creating database files
(if needed), creating tables, and pre-loading initial data. Once the database is
initialized, the benchmark app exits and restarts.

After the benchmark app restarts it loads the pre-defined workload into mem-
ory. The choice to use a pre-defined, pre-loaded trace was made for two reasons.
First, this ensures that overheads from workload generation remain constant
across experiments; there is no cost for assembling the SQL query string rep-
resentation. Second, having the same exact sequence of queries allows for com-
pletely repeatable experiments across different experimental configurations.

Metrics Collected. Log data was collected through ftrace. We instrumented
the Android kernel, SQLite database engine, and driver application to log and
timestamp the following events: 1. I/O operations like FSync, Read, and Write;
2. Context switches to and from the app’s namespace; 3. Changes in CPU voltage
scaling; and 4. Trace start and end times.

Logging context switches allows us to track points where the app was sched-
uled on-core, track background application use, and see when cores are idling.
This is crucial, as unlike in server-class database measurement, we are intention-
ally operating the embedded database at well below saturation. The overhead of
native-code platform events (1) and kernel-level events (2-3) are minimal. Trace
start and end times, while injected from the app, are only 2 events and have
minimal total impact.

3.3 The PocketData Benchmark

We base the POCKETDATA measurement workload on insights drawn from our
prior study [18], which found that smartphone queries typically follow key-value-
style access and update patterns. Queries or updates operate on individual rows,

® Complete benchmark results are available at http://www.pocketdata.info/

or (rarely) the entire table. A quarter of apps observed by the study used ex-
clusively key-value-style queries. Even the median app’s workload was over 80%
key-value style queries. Accordingly, we build POCKETDATA by adapting the
workloads from YCSB [8], an industry standard benchmark for key-value stores.
We used an initial database of 500 records, approximately the median size of
databases in our prior study [18] and a workload of 1800 operations per trial.

4 Benchmark Results

We organize this section by first discussing our application of the POCKETDATA
benchmark to our test environment. We then overview the results obtained from
our study, and highlight areas identified for potential system performance im-
provement. Finally, we discuss measurement variance trends we observed, and
identify two sources of this variance.

Reference Platforms. Our database benchmarking results were obtained from
from two Android Nexus 6 devices, running Android OS 6.0.1, with 2GB RAM
and a Quad-core 2.3 GHz CPU (quality bin 2 for both devices). One of the
Nexus 6 devices was modified to permit energy measurements, which we collected
using a Monsoon LVPM Power Meter®. To ensure measurement consistency, we
modded the AOSP on the device to disable a feature that turns the screen on
when it is plugged in or unplugged — the screen remained off throughout the
benchmark. For one set of experiments, in order to analyze the source of variance
in database latencies, we additionally modded the SQLite engine in AOSP to
monitor time spent performing I/O operations.

4.1 Results Obtained and Analysis Method
Our key findings for the Nexus 6 are as follows:

— Below saturation, Android’s default governors keep the CPU at approxi-
mately half-speed, even on CPU-intensive workloads, reducing performance.

— A governor that pins the CPU to half-speed outperforms both default gov-
ernors on virtually all workloads below saturation.

— Below saturation and on a fixed workload, both of Android’s default gover-
nors also under-perform with respect to power consumption.

Using the Monsoon meter, we measured the total energy consumed by the sys-
tem, from launch to completion of the benchmark runner app while running a
single workload. To account for a spike in power consumption as the runner app
launches and exits, we count net energy use relative to a null workload that
simply launches and exits the benchmark without running any queries.

Results by Workload. The multiple workloads within the POCKETDATA
benchmark yield finer insight into performance under different types of condi-
tions. For conciseness, we focus our discussion on a workload subset that explores

S http://www.msoon.com/LabEquipment/

Workload‘Description
YCSB-A[50% write, 50% read zipfian
YCSB-B|5% write, 95% read zipfian
YCSB-C|100% read zipfian
YCSB-E|5% append, 95% scan zipfian

Fig.3: The six YCSB and two PocketData workloads.

these differences (A, B, C, E). As shown in Figure 3 this results in a gradient
of read-heavy to write-heavy (C, B, A, respectively), as well as a more CPU-
intensive scan-heavy workload. We specifically divide our discussion into three
categories of workload: Read-heavy (B,C), Write-heavy (A), and Scan-heavy (E).

A second dimension of analysis is CPU load. As we discussed in the intro-
duction, system performance can change dramatically when the CPU operates
below saturation. Thus, we present results for two different CPU conditions:
saturated (Oms delay) and unsaturated (lognormal delay).

Next, we ran each workload under each of 5 different CPU governor policies.
3 of them are non-default choices: Performance (run at the highest possible
speed, 2.65 GHz), Fixed-50 (The customizable Userspace governor set to run at
a fixed midpoint frequency of 1.26 GHz), and Powersave (run the CPU at the
lowest possible speed, 300 MHz). The last 2 choices, Interactive and Onde-
mand, are the current and previous Android defaults as discussed in Section 2.

The 4 workloads (A, B, C, and E), 2 CPU saturation settings, and 5 gov-
ernor policies produce 40 measurement combinations. We ran each combination
3 times, and report the average and 90% confidence intervals. As we discuss
below, certain workload combinations proved much more consistent in measure-
ment than others. We observed measurement variance resulting from I/O block-
ing and the phone’s power source. To investigate this aspect further, we re-ran
several representative workloads, while measuring database file access time at
the SQLite-kernel boundary. We re-ran each of these workloads under each of 3
different power source settings, 6 additional times each.

4.2 Read Heavy Workloads

Read-heavy database workloads are particularly important, as reads account for
three-quarters of a typical database workload [18]. Energy consumption is also
a key issue on mobile. CPU governors, in turn, heavily influence the behavior of
both of these factors. We therefore focus on the performance-energy relationship
of database operations under different governor settings. Our study results show
that system default governors result in sub-optimal latencies and energy costs
for database workloads in the bulk of representative read-heavy scenarios.

Workloads are CPU-Bound but respond quickly. Latencies from read
operations are due nearly entirely to CPU time (plus explicit benchmark delays)
as a consequence of pre-caching performed by the SQLite database library. Figure
2a, for read-only workload YCSB-C, illustrates this clearly: there is virtually no
unscheduled time beyond the total time spent explicitly waiting (0s, 2s, and

12s, respectively). There was very little I/O activity under C, nearly all of it
immediately at the start of the workload as the table is pre-fetched. Because of
this pre-fetching, reads are serviced mostly from cache and there is little blocking.

Non-default governors offer better performance. Mobile platforms must
always balance performance against energy. Figures 5 and 6 show the database
latency and energy cost for each of the 5 governor choices for 2 read-heavy
loads: C is read-only; B adds 5% writes. An ideal governor would be as close to
the bottom left of the scatterplot as possible — that is, it should optimize both
database latency and energy consumption.

Uninterrupted query timing essentially means the CPU will be running at
saturation regardless of governor choice, and latencies tend to flatten. Thus,
unsurprisingly, on uninterrupted, read-only workloads (Figure 5a), both default
governors nearly match the performance governor’s latency. However, as the
vertical scale of 5a shows, running saturated read workloads with the Perfor-
mance governor also significantly saves rather than costs energy versus all other
choices. On this workload, there is no benefit to be gained by micro-managing
system performance, and so the static governor significantly outperforms the dy-
namic defaults. The saturated 95% read workload B (Figure 6a) shows similar
characteristics, albeit with an even more significant latency gap between the Per-
formance and the default governors. Here, the limited 1/0 is interpreted by the
system as a reduction in workload, and thus an opportunity to ramp down the
CPU. However, the overhead of micromanagement again outweighs the benefits.

Unsaturated read-heavy workloads (Figures 5b and 6b) model bursty, inter-
active usage patterns. Here, we observe a performance-energy trade-off between
the Performance and Fixed-50 governors. On both read-heavy workloads under
the performance governor, the average query is processed approximately 0.5ms
faster, while under the Fixed-50 governor power consumption is reduced by ap-
proximately a third. Notably, the Fixed-50 governor outperforms both default
governors on both workloads and on both axes: Lower energy and lower latency.

Keeping the CPU hot can reduce energy costs. We observe that both
default governors perform better on saturated workloads. When such saturation
is possible, it can be advantageous, not just from a latency but also an energy
standpoint, to keep the CPU busy. This makes batching read queries especially
important, as doing so can significantly reduce power consumption. Alterna-
tively, it may be possible for apps to reduce power consumption by busy-waiting
the CPU during I/O operations when such operations are short and infrequent.

Frequency scaling has a non-monotone effect on energy consump-
tion. On the read-only workload C (Figure 7a), energy cost is minimized with
the CPU running at half (Fixed-50), rather than minimum speed (Powersave).
Energy consumption scales super-linearly with frequency and there is an un-
avoidable fixed energy cost to simply keeping the core powered on (although
recall that we keep the screen off during tests). Thus, the benefit of slowing the
processor down is outweighed by the cost of keeping the core powered up longer.

Threads are very sensitive to YCSB Workload C (1ms delay)
governor performance differences.
When running read-heavy workloads,
unless the CPU is already at satu-
ration, the CPU often runs well be-
low maximum speed under the Inter-
active governor. Figure 4 shows that,
with the addition of 1ms pauses, the
CPU frequency is largely stuck near
500 MHz, well below the 2.65 GHz
maximum (the minimum is 300 MHz).
As the core is running at a lower
frequency when a query arrives, the
query takes a performance hit. As the
query finishes the Interactive governor ramps up the CPU unnecessarily, wast-
ing energy. This same effect appears in Figure 2b, which shows higher latencies
for intermittent queries (light-red bars on graph) with either default governor
(Interactive or Ondemand) than when the CPU is saturated (Performance).

[y I ~ N
o n o n

SQLite CPU Freq (GHz)
°

o
°
)

1 6

2 3 4 5
Time since first query (s)

Fig.4: Benchmark App Thread’s
CPU Frequency.

4.3 Write Heavy Workloads

Write-heavy workloads on the Android platform have higher latencies than their
read-heavy counterparts, and latencies of the fixed-speed (non-default) governors
scale inversely with energy consumption.

Non-default governors again improve performance. Figure 7 shows the
latency/energy metrics for Workload A, which is 50% write operations. The re-
sults for the saturated workload (Figure 7a) show that the Fixed-50 governor
notably outperforms all others. The Powersave governor has the lowest energy
cost, but also has the worst performance. However, for write-heavy threads run-
ning on saturated CPUs (which is the case when a series of write operations arrive
consecutively), the system default choices again under-perform significantly.
Write-heavy operations that occur intermittently exhibit a similar latency-
energy metric to that of intermittent read-heavy threads. As before, Figure 7b
shows the tradeoff: Performance and Powersave offer the opposing extremes of
latency and energy, while the Fixed-50 governor compromises between extremes.

4.4 Scan Heavy Workloads

Scan-heavy workloads involve longer-running, CPU-bound queries, which keep
the CPU loaded for longer intervals. As a result, we see less variation between
saturated and unsaturated workloads.

Table Scans are CPU-Intensive. In workload E, reads are scan operations.
The increase in latency for workload E is mostly due to sharply higher CPU
time, with marginally greater non-scheduled non-benchmark delay time. This
penalty is due to additional actual computation rather than frequency scaling:

Workload C -- Saturated CPU

3

@ Powersave
@ Fixed-50

@ Performance
% Interactive
% Ondemand
T000 2000 3000 4000 5000 6000 _ 7000 8000

Workload Latency (ms)

Net Energy Cost (pAh)

Governor _|Latency|LatErr|LatErr%|Energy|EnErr|EnErr%

Workload C -- Unsaturated CPU

320
=
g
- 2680
0
8
>
& 240
4
2

220
w & Powersave
B 200 @ Fixed-50
F # Performance|

180| ¥ Interactive

Ondemand
3000 14000 15000 16000 17000 18000 19000 20000 21000
Workload Latency (ms)

Governor

Latency |LatErr‘LatErr%|Energ,y|EnErr EnErr%

Powersave |7420.37| 70.56 | 0.95 |105.74|30.36 | 28.71
Fixed-50 |1881.71| 42.89 | 2.28 | 70.53 |15.51| 21.99
Performance|1026.28| 34.70 | 3.38 |101.26(14.39 | 14.21
Interactive |1071.52| 5.70 0.53 [135.47(14.68 | 10.83
Ondemand |1044.73| 9.08 0.87]105.63|14.00 | 13.25

(a) Uninterrupted query arrivals

Powersave [20746.12| 83.19 | 0.40 |236.2355.15

Fixed-50

14475.99| 76.37 | 0.53 |199.18|35.49

Performance|13531.38| 34.55 | 0.26 |317.8916.84
Interactive |20552.94| 29.13 0.14 |274.67|54.59
Ondemand [16261.75| 75.97 0.47 |265.77|35.43

23.34
17.82
5.30
19.87
13.33

(b) Intermittent query arrivals

Fig.5: Workload C: Latency performance and energy costs.

Workload B -- Saturated CPU

1
t

3

(@ Powersave
@ Fixed-50

@ Performance|
[Interactive
% Ondemand
00 2000 3000 4000 5000 6000 7000 8000 9000 10000

Workload Latency (ms)

Net Energy Cost (pAh)

Governor _|Latency|LatErr|LatErr%|Energy|EnErr|[EnErr%

Governor

Net Energy Cost (pAh)

Workload B -- Unsaturated CPU

&

250}

@ Powersave
@ Fixed-50

& Performance|
% Interactive
% Ondemand

14000 15000 16000 17000 18000 19000 20000 21000 22000 23

Workload Latency (ms)

Latency |LmErr‘LatErr%|Energy|EnErr

00

EnErr%

Powersave [9050.50 59.73 | 0.66 |188.66|25.13| 13.32
Fixed-50 |[2881.91| 26.50 | 0.92 |165.69(38.30| 23.12
Performance|1499.00| 43.99 | 2.93 |167.59(25.17 | 15.02
Interactive |2058.75(237.60| 11.54 |232.62|14.47| 6.22
Ondemand [2075.51{236.12| 11.38 |201.27|13.22| 6.57

(a) Uninterrupted query arrivals.

Powersave [22501.64|157.16| 0.70 |279.47 [56.54

Fixed-50

15636.47| 33.89 | 0.22 |304.26 | 45.42

Performance|14473.82| 43.26 | 0.30 |505.56 | 85.59
Interactive |21574.05/152.85| 0.71 |335.25| 7.54
Ondemand [17087.27|230.54| 1.35 |[502.52|58.80

20.23
14.93
16.93
2.25

11.70

(b) Intermittent query arrivals.

Fig.6: Workload B: Latency performance and energy costs.

Workload A -- Saturated CPU

@ Powersave

@ Fixed-50
1200 4 Performance|

B Interactive

% Ondemand
000 ——$———

I
|

e +

4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

Workload Latency (ms)

Net Energy Cost (pAh)

Governor | Latency LatErr|LatErr%|Energy|EnErr EnErr%

Net Energy Cost (pAh)

2000,

1800|

1600|

1400|

1200/

1000/

Workload A -- Unsaturated CPU

@ Powersave
@ Fixed-50

@ Performance|
#: Interactive
% Ondemand

+ '

600)

¢

*38000

72000 24000 26000 28000 30000 32000 34
Workload Latency (ms)

Governor | Latency | LatErr ‘LatEn‘%‘ Energy |EnErr

00

EnErr%

Powersave [19623.81[746.31| 3.80 |505.00 | 55.21 | 10.93
Fixed-50 [6976.35 [1985.89| 28.47 |476.50 | 87.50 | 18.36
Performance| 7264.69 |2769.70| 38.13 [1014.37|346.41| 34.15
Interactive | 7447.07 [1146.02| 15.39 | 791.25 [189.75| 23.98
Ondemand | 7135.57 [2281.21| 31.97 | 623.73 [146.73| 23.52

(a) Uninterrupted query arrivals.

Powersave (33503.64(148.43 | 0.44 | 641.33 | 55.67
Fixed-50 [22496.20(2416.73| 10.74 |801.56 |163.59
Performance|22143.90| 631.65 | 2.85 |1635.42|205.02
Interactive |29456.82(101.43 | 0.34 |917.39 | 89.12
Ondemand |22966.05|1491.80| 6.50 | 988.84 |127.23

8.68
20.41

12.54
9.71
12.87

(b) Intermittent query arrivals.

Fig. 7: Workload A: Latency performance and energy costs.

Workload E -- Saturated CPU 1300, Workload E -- Unsaturated CPU

@ Fowersave @ Powersave
1000 @ Fixed-50 + @ Fixed-50

= 4 Performance| = 1209 & Performance

g_ 950) % Interactive g ¥ Interactive

= % Ondemand = % Ondemand

= 900 = 1100

17 I

& o 8

= >, 1000

D w0 3

Q o +

c 750 C 900

w w

0 700 - N

2 + ® 2 o

650|
0000 20000 30000 40000 50000 60000 36000 30000 0000 50000 50000 75000
Workload Latency (ms) Workload Latency (ms)

Governor | Latency |LatErr‘LatErr%lEnergy‘EnErr EnErr% Governor | Latency |LatErr| LatErr%‘ Energylh}nErr EnErr%
Powersave [51067.97|193.85| 0.38 |674 12.96| 1.92 Powersave (64920.82(187.59| 0.29 |842.86 (102.94| 12.21
Fixed-50 [13582.61|125.16| 0.92 [656.67(46.93| 7.15 Fixed-50 |26494.90[238.82| 0.90 |845.44(92.60| 10.95
Performance| 7669.62 | 63.34 | 0.83 |937.61|64.22| 6.85 Performance|20516.58|111.90| 0.55 [1210.57| 68.30 | 5.64
Interactive | 7926.37 |350.87| 4.43 [921.25|41.28 | 4.48 Interactive [33449.11{299.14| 0.89 |898.96 | 57.73 | 6.42
Ondemand | 8281.21 | 74.40 | 0.90 |871.84|15.98| 1.83 Ondemand [26748.52| 33.52 | 0.13 [1237.04| 42.63 | 3.45

(a) Uninterrupted query arrivals. (b) Intermittent query arrivals.

Fig. 8: Workload E: Latency performance and energy costs.

Unlike with previous workloads, CPU time for E remains relatively unaffected
by increased benchmark delay settings. For E, DB usages involving significant
scans can still be serviced largely from cache, but they incur computation costs.

Non-default governors often improve performance. Workload E, com-
prised of 95% table scans, is shown in Figure 8. When database operations arrive
uninterrupted, Figure 8a shows the default Interactive governor offers best la-
tency. As in the read-heavy workloads, the Fixed-50 governor (not the Powersave
governor) offers the lowest energy cost, with only a slight latency penalty.

Unsaturated scan-heavy threads generally follow the latency-energy trade-off
pattern of previous workloads as well. Figure 8b shows that, as before, Perfor-
mance and Powersave offer opposing extremes of latency and energy metrics.
However, both are only negligibly better than the Fixed-50 governor, which also
outperforms the default governors on both metrics.

4.5 Sources of Measurement Variance Load|Reads|Writes|Syncs

A | 4073 | 4986 | 2234
B | 3675 | 572 244
C | 3625 0 0
E | 3719 | 1037 | 464

Energy usage measurements showed signifi-
cant but constant variation (reflected in the
vertical error bars in graphs 5-8) across all test
configurations. Overall energy usage is low,
exposing measurement to noise from small
variations in background system behavior.
Note that the energy noise level stays con-
stant, even as overall load increases as in workload E. Conversely, latency vari-
ance (horizontal error bars) is low for 3 of 4 workloads. Loads B, C and E, for
both saturated and unsaturated CPUs, all had relatively small margins: 11% at
most. However, measurement error for load A, particularly for a saturated CPU,
was anomalously high: from 15%-38% for all CPU policies except Powersave.

Fig.9: Number of SQLite
I/0 Operations

Workload A (Saturated CPU)

14000 /0 time
Non-I/0 time

Workload A is write-heavy, in-
volving a relatively large num-
ber of I/O operations compared
to other loads (see Figure 9). To
confirm that fluctuation in I/0
time was indeed the source of the
large latency error measurement
for A, we instrumented SQLite to P TETY ST Far e

measure the time spent blocked Workload run #
on read, write, and fsync opera- Fig.10: Effect of I/O operations on

tions. We re-ran A with a satu- Workload latency variance

rated CPU 20 additional times.

Figure 10 compares, for workload A under the default Interactive governor, the
latencies of these runs. Total latency varies significantly, exhibiting a bimodal
distribution, with one mode around 6s and a second mode at 11s. Looking deeper,
the latency of each run is composed of I/O time (dark blue) and non-I/O time
(light orange). While non-I/0 time for each of the runs is quite consistent, I/O
time also varies bimodally. Likely, this is due to flash storage overhead having
to prepare for block erases and writes. The saturated CPUs particularly expose
this: unsaturated CPUs allow flash erasure to take place during quiescent peri-
ods, rather than forcing the benchmark to block. Workloads B, C and E exhibit
much less latency variance, as they lack significant write activity and do not
need to erase flash. Workload A is dominated by write costs and thus suffers
increased variance.

12000

10000
8000
6000
4000 I I I I

2000

Total Latency (ms)

5 Related Work

Lightweight DBMSes. MySQL [40] got its start as a lightweight DBMS, while
libraries like SQLite [30] and BerkeleyDB [28] both provide server-less database
functionality within an application’s memory space. TinyDB [23] is a lightweight
DBMS intended for use in distributed IoT settings. In addition to aiming for a
low memory footprint, it allows queries to be scheduled for distributed execution
over a cluster of wireless sensor motes. While these approaches target application
developers, other efforts like GestureDB [26] target users of mobile devices and
optimize for different types of interaction modalities.

Benchmarking. A range of benchmarks exist for server-class databases [36, 29,
4] and other data management platforms [8,15,20]. However, as we point out,
assumptions typically made by these benchmarks produce invalid results when
evaluating pocket-scale data management systems. There is however overlap on
some non-traditional metrics like energy use in data management platforms [27,
33,32, 31]. Notably, configuration parameters optimized for these benchmarks
typically involve significant changes to the hardware itself. Through features
like frequency scaling on the CPU and RAM, mobile devices are capable of far
more fine-grained control on the fly, markedly changing the evaluation landscape.

Conversely, A number of other benchmarks target embedded devices. An-
droStep [22] evaluates phone performance in general terms of CPU and energy
usage. Energy is also a common specific area of study — Wilke et al. compare con-
sumption by applications [38]. AndroBench [19] studies the performance of file
systems, but uses SQLite as a representative workload for benchmarking filesys-
tem performance. While these benchmarks use SQLite as a load generator, it is
the filesystem being evaluated and not the database itself.

Profiling Studies. One profiling study by Wang and Rountev [37] explored
sources of perceived latency in mobile interfaces. They found databases to be a
common limiting factor. A study by Prasad et al. [34] looked at hardware per-
formance profiles relative to CPU quality ratings assigned by the chip manufac-
turer. They found a wide distribution of thermal profiles and CPU performance
for devices ostensibly marketed as being identical. Our previous study [18] used
a user-study to explore characteristics of mobile database workloads, and forms
the basis for POCKETDATA as described in this paper.

There have a been a number of performance studies focusing on mobile plat-
forms and governors for managing their runtime performance characteristics [6,
25,10,11,7]. Most of these studies focus on managing the performance and en-
ergy tradeoff and none look at the effect of the governor on embedded database
performance. A few make the argument that for more effective over all sys-
tem utilization considerations of the whole program stack must be made [17]
and instead of managing applications individually, system wide services should
be created for more wholistic management [16]. More recently, there has been
interest in specialized studies focusing on performance and energy consump-
tion of specific subsystems, like mobile web [5]. These studies do not, however,
document the competing performance metric tradeoffs between governors. Nor
do they explore the effect of system load on performance rankings of gover-
nor choices. We view our study and performance debugging methodology for
embedded databases on mobile devices to be a first step at understanding the
performance effect of the mobile platform on mobile databases.

6 Conclusions

The mobile platform presents unique characteristics for database benchmarking.
The systems themselves are resource-limited, and the typical workloads differ
markedly from those experienced by traditional server-class databases. Further-
more, mobile systems are structured differently, with power management and
flash memory I/O contributing a significant amount of noise to measurement
efforts. Measurement systems that fail to account for these differences will miss
critical performance information. While we focused our study on SQLite, the
system default database, we designed our benchmark to be database-agnostic,
and results from POCKETDATA on other configurations can be found on our
website http://pocketdata.info.

For a given database and workload, different governors yield different database
performance and energy consumption metrics. A non-default governor selection

can often improve markedly on either latency or energy performance — some-
times in both. While the database is aware of the information necessary to make
this choice, the kernel is not, suggesting opportunities for future improvement.
In future work, we will explore how the kernel can be adapted to solicit this
information and then incorporate it into a wiser governor selection.

7 Acknowledgments
This work is supported by NSF Awards 11S-1617586, CNS-1629791 and CCF
1749539.
References
1. Ahmed, M., Uddin, M.M., Azad, M.S., Haseeb, S.: Mysql performance analysis on

10.

11.

12.

13.

14.
15.

16.

17.

a limited resource server: Fedora vs. ubuntu linux. In: SpringSim (2010)
Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., Paleczny, M.: Workload analysis
of a large-scale key-value store. SIGMETRICS Perform. Eval. Rev. 40(1), 53-64
(Jun 2012)

Baumggértel, P., Endler, G., Lenz, R.: A benchmark for multidimensional statistical
data. In: ADBIS (2013)

Bitton, D., DeWitt, D.J., Turbyfill, C.: Benchmarking database systems A system-
atic approach. In: VLDB. pp. 8-19. Morgan Kaufmann (1983)

Cao, Y., Nejati, J., Wajahat, M., Balasubramanian, A., Gandhi, A.: Deconstructing
the energy consumption of the mobile page load. PMACS 1(1), 6:1-6:25 (Jun 2017)
Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In:
USENIXATC. pp. 21-21 (2010)

Chen, X., Chen, Y., Dong, M., Zhang, C.: Demystifying energy usage in smart-
phones. In: DAC (2014)

Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: SOCC (2010)

Curino, C.A., Difallah, D.E., Pavlo, A., Cudre-Mauroux, P.: Benchmarking olt-
p/web databases in the cloud: The oltp-bench framework. In: CloudDB (2012)
Dietrich, B., Chakraborty, S.: Power management using game state detection on
android smartphones. In: MobiSys. pp. 493-494 (2013)

Egilmez, B., Memik, G., Ogrenci-Memik, S., Ergin, O.: User-specific skin
temperature-aware dvfs for smartphones. In: DATE. pp. 1217-1220 (2015)
Erling, O., Averbuch, A., Larriba-Pey, J., Chafi, H., Gubichev, A., Prat, A., Pham,
M.D., Boncz, P.: The ldbc social network benchmark: Interactive workload. In:
SIGMOD (2015)

Frank, M., Poess, M., Rabl, T.: Efficient update data generation for dbms bench-
marks. In: ICPE (2012)

Google: Android open source project. https://source.android.com/ (2018)

Gupta, A., Davis, K.C., Grommon-Litton, J.: Performance comparison of property
map and bitmap indexing. In: DOLAP. pp. 65-71. ACM (2002)

Hussein, A., Payer, M., Hosking, A., Vick, C.A.: Impact of gc design on power and
performance for android. In: SYSTOR. pp. 13:1-13:12 (2015)

Kambadur, M., Kim, M.A.: An experimental survey of energy management across
the stack. In: OOPSLA. pp. 329-344 (2014)

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.
28.
29.
30.
31.
32.
33.

34.

35.

36.

37.

38.

39.

40.

Kennedy, O., Ajay, J.A., Challen, G., Ziarek, L.: Pocket Data: The need for TPC-
MOBILE. In: TPC-TC (2015)

Kim, J., Kim, J.: Androbench: Benchmarking the storage performance of android-
based mobile devices. In: ICFCE. Advances in Intelligent and Soft Computing,
vol. 133, pp. 667-674. Springer (2011)

Klein, J., Gorton, I., Ernst, N.A., Donohoe, P., Pham, K., Matser, C.: Performance
evaluation of nosql databases: A case study. In: PABSQICPE. pp. 5-10. ACM
(2015)

Kuhlenkamp, J., Klems, M., Rdss, O.: Benchmarking scalability and elasticity of
distributed database systems. pVLDB 7(12), 1219-1230 (Aug 2014)

Lee, K.: Mobile benchmark tool (mobibench)

Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: An acquisi-
tional query processing system for sensor networks. ACM TODS 30(1), 122-173
(Mar 2005)

Malkowski, S., Jayasinghe, D., Hedwig, M., Park, J., Kanemasa, Y., Pu, C.: Em-
pirical analysis of database server scalability using an n-tier benchmark with read-
intensive workload. In: SAC (2010)

Mercati, P., Bartolini, A., Paterna, F., Rosing, T.S., Benini, L.: A linux-governor
based dynamic reliability manager for android mobile devices. In: DATE. pp.
104:1-104:4 (2014)

Nandi, A., Jiang, L., Mandel, M.: Gestural query specification. PVLDB 7(4), 289—
300 (2013)

Niemann, R.: Towards the prediction of the performance and energy efficiency of
distributed data management systems. In: ICPE Companion. pp. 23-28 (2016)
Olson, M.A., Bostic, K., Seltzer, M.I.: Berkeley DB. In: USENIX Annual Technical
Conference, FREENIX Track. pp. 183-191. USENIX (1999)

O’Neil, P.E., O’Neil, E.J., Chen, X.: The star schema benchmark (ssb) (2007)
Owens, M., Allen, G.: SQLite. Springer (2010)

Poess, M., Nambiar, R.O.: Energy cost, the key challenge of today’s data centers:
a power consumption analysis of TPC-C results. PVLDB 1(2), 1229-1240 (2008)
Poess, M., Nambiar, R.O., Vaid, K.: Optimizing benchmark configurations for en-
ergy efficiency. In: ICPE. pp. 217-226. ACM (2011)

Poess, M., Nambiar, R.O., Vaid, K., Stephens, J.M., Huppler, K., Haines, E.: En-
ergy benchmarks: a detailed analysis. In: e-Energy. pp. 131-140. ACM (2010)
Srinivasa, G.P., Begum, R., Haseley, S., Hempstead, M., Challen, G.: Separated by
birth: Hidden differences between seemingly-identical smartphone cpus. In: Hot-
Mobile. pp. 103-108. ACM (2017)

Tomds, G., Zeller, P., Balegas, V., Akkoorath, D., Bieniusa, A., Leitdo, J.a.,
Preguica, N.: Fmke: A real-world benchmark for key-value data stores. In: PaPoC
(2017)

Transaction Processing Performance Council: TPC-H, TPC-C, and TPC-DS spec-
ifications. http://www.tpc.org/

Wang, Y., Rountev, A.: Profiling the responsiveness of android applications via
automated resource amplification. In: MOBILESoft. pp. 48-58. ACM (2016)
Wilke, C., Piechnick, C., Richly, S., Piischel, G., G6tz, S., ABmann, U.: Comparing
mobile applications’ energy consumption. In: SAC. pp. 1177-1179. ACM (2013)
Yang, S., Yan, D., Rountev, A.: Testing for poor responsiveness in Android appli-
cations. In: Workshop on Engineering Mobile-Enabled Systems. pp. 1-6 (2013)
Yarger, R.J., Reese, G., King, T.: MySQL and mSQL - databases for moderate-
sized organizations and websites. O’Reilly (1999)

